Skip to main content
Distribuir contenido IEMath-Gr – IEMath-Granada
Instituto de Matemáticas de la Universidad de Granada
Actualizado: hace 6 horas 20 mins

Seminario de Geometría

Mié, 09/09/2020 - 10:43

Día: 25 de septiembre de 2020

Hora: 11:30 – 12:30

Lugar: Videoconferencia Sala TESLA de UGR, https://oficinavirtual.ugr.es/redes/SOR/SALVEUGR/accesosala.jsp?IDSALA=22968085

Contraseña de la reunión: 961838

Ponente: Jaehoon Lee (Seoul National University)

Título: Closed Lagrangian Self-Shrinkers in \( \mathbb{R}^4\) Symmetric with Respect to a Hyperplane

Resumen: It is important to understand Lagrangian self-shrinkers with simple geometry since it is the starting point of singularity analysis for the Lagrangian mean curvature flow. One interesting observation is that all known embedded examples in \(\mathbb{R}^4\) become the Clifford Torus. Hence it is natural to ask whether the Clifford Torus is unique as an embedded Lagrangian self-shrinker in \(\mathbb{R}^4\). In this direction, we recently proved that a closed Lagrangian self-shrinker in \(\mathbb{R}^4\) symmetric with respect to a hyperplane is given by the product of two Abresch-Langer curves and obtained a positive answer for the question by assuming reflection symmetry. In this talk, we will focus on the motivation for this work and the reason why reflection symmetry was assumed. Moreover, the idea of proof will also be discussed.

Para más información, visitar https://wpd.ugr.es/~geometry/seminar/es

Categorías: Noticias

Gianmarco Giovannardi

Mar, 01/09/2020 - 19:20

Contratado post-doctoral asociado a …

Fechas de la estancia en IEMath-GR: desde el 1 de octubre de 2020 hasta el 30 de septiembre de 2021

Despacho D9

Categorías: Noticias

Seminario de Geometría

Dom, 30/08/2020 - 18:44

Día y hora: Viernes 11 de septiembre, 11:30 – 12:30

Lugar: Seminario 2º planta, IEMath-GR

Título: Integrable systems methods for surfaces and new families of constant mean curvature surfaces in \(\mathbb{R}^3\)

Abstract: In this lecture, I will outline the technique of integrable systems for CMC surfaces, but with a view at some other cases. Then I will explain some recent developments in the construction of certain families of CMC surfaces using this setup. In particular, we start with a 2×2 Cauchy problem to which we associate a scalar second-order differential equation. The singularities in this ODE correspond to the ends in the resulting surface. Particularly, regular singularities produce asymptotically Delaunay ends while irregular singularities produce irregular ends. Our aim is to discuss global issues such as period problems and asymptotic behavior involved in the construction of CMC surfaces in \(\mathbb{R}^3\) arising from the family of Heun’s differential equations.

Categorías: Noticias

Eduardo Mota Sánchez

Mar, 25/08/2020 - 17:52

Contratado postdoctoral asociado al proyecto “Problemas variacionales y EDPs elípticas en Geometría”, A-FQM-139-UGR18, financiado por la Junta de Andalucía y la Unión Europea.

Duración del contrato: 1 septiembre 2020 – 28 febrero 2021

Despacho en IEMath-GR: D8, segunda planta

Categorías: Noticias